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Abstract. We suggest a generalization of the Lie algebraic approach for constructing quasi-
exactly solvable one-dimensional Schrödinger equations. This generalization is based on
representations of Lie algebras by first-order matrix differential operators. We have classified
inequivalent representations of the Lie algebras of dimensions up to three by first-order matrix
differential operators in one variable. Next we describe invariant finite-dimensional subspaces of
the representation spaces of the one-, two-dimensional Lie algebras and of the algebrasl(2,R).
These results enable us to construct multiparameter families of first- and second-order quasi-
exactly solvable models. In particular, we have obtained two classes of quasi-exactly solvable
matrix Schr̈odinger equations.

1. Introduction

There exists a small number of remarkable Hamiltonians (called exactly solvable) whose
spectra and corresponding eigenfunctions can be computed in a purely algebraic way (see,
e.g. [1]). However, the choice of such Hamiltonians is too restricted to meet numerous
requirements coming from different fields of modern quantum physics. Recently, an
intermediate class of Hamiltonians was introduced by Turbiner [2] and Ushveridze [3]
which allows an algebraic construction of the part of their spectra. Spectral problems of
this kind are calledquasi-exactly solvable.

Quasi-exactly solvable models have an amazingly wide range of applications in different
fields of theoretical physics including conformal quantum-field theories [4], solid-state
physics [5, 6] and Gaudin algebras (an excellent survey on this subject and an extensive
list of references can be found in [7]). So it was only natural that there appeared different
approaches to constructing quasi-exactly solvable models, including the one based on their
conditional symmetries (for more details see [8]). However, for the purposes of this paper
the most appropriate is the Lie-algebraic approach suggested by Shifman [9], Shifman and
Turbiner [10] and further developed by González-Ĺopezet al [11–13]. That is why we will
give its brief description (further details can be found in [7]).

The Lie-algebraic approach to constructing quasi-exactly solvable one-dimensional
stationary Schr̈odinger equations(

− d2

dx2
+ V (x)

)
ψ(x) = λψ(x) (1)
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heavily relies upon the properties of representations of the algebrasl(2,R)

[Q0,Q±] = ±Q± [Q−,Q+] = 2Q0

by first-order differential operators. Namely, the approach in question utilizes the fact that
the representation space of the algebrasl(2,R) having the basis elements

Q− = d

dx
Q0 = x d

dx
− n

2
Q+ = x2 d

dx
− nx (2)

wheren is an arbitrary natural number, has an(n+ 1)-dimensional invariant subspace. Its
basis is formed by the polynomials inx of an order not higher thann. Due to this fact,
any bilinear combination of operators (2) with constant coefficients yields a quasi-exactly
solvable HamiltonianH such that the equationHψ = λψ can always be reduced to the
form (1) with the help of a transformation

ψ(x)→ F(x)ψ̃(f (x)).

Note that the above-described procedure does not guarantee that eigenfunctions of thus
constructed quasi-exactly solvable Hamiltonians will be square-integrable. What can be
done within this approach is to reduce a ‘differential’ eigenvalue problem to a matrix
one. The matter of a square integrability as well as other analytical properties of solutions
obtained are to be investigated separately by independent methods (see, e.g. [14]).

Recently, a number of papers devoted to constructing matrix quasi-exactly solvable
models have been published [15–18]. These papers use the same basic idea which is to fix
a concrete subspace of sufficiently smooth multicomponent functions and then to classify all
second-order matrix differential operators leaving this subspace invariant. Furthermore, the
above subspace is chosen to be the space of all multicomponent functions with polynomial
components. Posed in this way, the problem of constructing matrix quasi-exactly solvable
includes as a subproblem, one of classifying realizations of Lie superalgebras by differential
operators. Being very rich in interesting and important results, this approach, however,
contains an evident restriction which does not allow us to constructall possible quasi-
exactly solvable models. What we mean is, the fact that an invariant subspace is not
necessarily spanned by functions having polynomial coefficients. It is one of the results of
this paper that there exist principally different invariant subspaces. Thus, there is a necessity
for developing alternative approaches to the problem in question that do not require fixing
a priori an invariant subspace.

Our initial motivation for studying matrix quasi-exactly solvable problems was to extend
the list of exactly solvable Dirac equations of an electron via a separation of variables. To
this end in [19] we suggested a method for constructing matrix quasi-exactly solvable models
based on a direct generalization of the Lie-algebraic approach for the case of multicomponent
wavefunctions. However, it turns out that the above method is universal enough to be
applied for obtaining second-order quasi-exactly solvable models as well, including the
Schr̈odinger equations with matrix potentials.

Following [19] we extend the class to which should belong basis elements of a Lie
algebra under study (say, of the algebrasl(2,R)). We define this class as the set of matrix
differential operators

Q = ξ(x) d

dx
+ η(x) (3)

whereξ(x) is a smooth real-valued function,η(x) is a smooth complex-valuedr× r matrix
function, and denote it asM. The classM is closed with respect to the binary operation

{Q1,Q2} → Q1Q2−Q2Q1
def=[Q1,Q2]
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and, consequently, forms the infinite-dimensional Lie algebra.
We will classify inequivalent representations of low-dimensional (d 6 3) Lie algebras

by operators belonging toM. Next, we will study the additional constraints on the form of
basis operators of the one- and two-dimensional Lie algebras imposed by the requirement
that their representation spaces contain finite-dimensional invariant subspaces. These results
will be used to obtain an exhaustive description of inequivalent representations of the
algebrasl(2,R) by matrix differential operators (3) withr = 2. Composing linear and
bilinear combinations of basis elements ofsl(2,R) with constant matrix coefficients will
yield multiparameter first- and second-order quasi-exactly solvable matrix models.

2. Classification of representations of low-dimensional Lie algebras

Since our aim is to get a quasi-exactly solvable model, we have to impose an additional
restriction on the choice of the basis elements of the Lie algebras to be considered below.
Namely, it is supposed that there exists at least one basis element such that the coefficient
of d/dx does not vanish identically. This constraint is required to avoid purely matrix
representations which are useless in context of quasi-exactly solvable models.

Consider a first-order differential operatorQ = ξ(x)∂x + η(x) with ξ 6≡ 0. Note that
hereafter we denote d/dx as∂x . Let the functionf (x) be defined by the relation

f (x) =
∫ x

a

dy

ξ(y)
a ∈ R

and the matrixr×r functionF(x) be a solution of system of ordinary differential equations

ξ(x)
dF(x)

dx
+ η(x)F (x) = 0

with detF(x) 6= 0. Then the equivalence transformation

Q→ Q̃ = (F (x))−1QF(x)

with a subsequent change of the dependent variable

x̃ = f (x)
reduces the operatorQ to becomeQ̃ = ∂x̃ . Consequently, any one-dimensional Lie algebra
of first-order matrix differential operatorsQ = ξ(x)∂x + η(x) with ξ 6≡ 0 is equivalent to
the algebra〈∂x〉.

Abstract Lie algebras of dimensions up to five have been classified by Mubarakzyanov
[20]. Below we give the lists of (non-zero) commutation relations which determine
inequivalent Lie algebras of dimensions up to three. Note that the algebras which are
direct sums of lower-dimensional Lie algebras are omitted from the lists.

L2,1 : [Q1,Q2] = Q1

L3,1 : [Q2,Q3] = Q1

L3,2 : [Q1,Q3] = Q1 [Q2,Q3] = Q1+Q2

L3,3 : [Q1,Q3] = Q1 [Q2,Q3] = Q2

L3,4 : [Q1,Q3] = Q1 [Q2,Q3] = −Q2

L3,5 : [Q1,Q3] = Q1 [Q2,Q3] = aQ2 (0< |a| < 1)

L3,6 : [Q1,Q3] = −Q2 [Q2,Q3] = Q1

L3,7 : [Q1,Q3] = aQ1−Q2 [Q2,Q3] = Q1+ aQ2 (a > 0)
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L3,8 : [Q1,Q2] = Q1 [Q1,Q3] = 2Q2 [Q2,Q3] = Q3

L3,9 : [Q1,Q2] = Q3 [Q2,Q3] = Q1 [Q3,Q1] = Q2.

Here a is a real parameter, the symbolLn,m stands for a Lie algebra of dimensionn
numbered bym.

Thus, there exists only one two-dimensional Lie algebraL2,1 = 〈Q1,Q2〉 which is not
a direct sum of one-dimensional Lie algebras.

If in the operatorQ1 = ξ(x)∂x + η(x) the coefficientξ is not identically zero, then
using equivalence transformations defined at the beginning of this section we can reduce it
to the formQ1 = ∂x̃ . InsertingQ1 = ∂x̃ , Q2 = ξ̃ (x̃)∂x̃+ η̃(x̃) into the commutation relation
[Q1,Q2] = Q1 and equating the coefficients of the powers of the operator∂x̃ yield systems
of ordinary differential equations for̃ξ(x̃), η̃(x̃)

dξ̃

dx̃
= 1

dη̃

dx̃
= 0.

Hence we obtaiñξ = x̃ + C1, η̃ = A, whereC1 ∈ R is an arbitrary constant andA is an
arbitrary constantr × r matrix. Shifting the variablẽx when necessary by a constantC1

we may putC1 = 0 and thus getQ2 = x̃∂x̃ + A.
If the operatorQ1 has the formη(x), then by convention the coefficient of∂x of

the operatorQ2 does not vanish identically. Consequently, there exists an equivalence
transformation reducing the latter to the formQ2 = ∂x̃ . SubstitutingQ1 = η̃(x̃),Q2 = ∂x̃
into the commutation relation of the algebraL2,1 and equating the coefficients of the powers
of the operator∂x we obtain the following equation for̃η(x):

dη̃

dx̃
= −η̃

whence

η̃(x̃) = Ae−x̃ .

HereA is an arbitraryr × r constant matrix.
Therefore, we conclude that the two realizations of the algebraL2,1

(1) Q1 = Ae−x Q2 = ∂x (4)

(2) Q1 = ∂x Q2 = x∂x + A (5)

exhaust the set of all possible inequivalent representations of the algebra in question within
the class of matrix differential operatorsM.

In a similar way we have obtained complete lists of inequivalent representations of the
three-dimensional Lie algebras within the classM which are given below.

L3,1 : Q1 = A Q2 = ∂x Q3 = ε∂x + Ax + B
[A,B] = 0

L3,2 : Q1 = Ae−x Q2 = εe−x∂x + (B − Ax)e−x Q3 = ∂x
[A,B] = −εA

L3,3 : Q1 = e−x(ε∂x + A) Q2 = e−x(α∂x + B) Q3 = ∂x
[A,B] = εB − αA

L3,4 :

(1) Q1 = Ae−x Q2 = ex(ε∂x + B) Q3 = ∂x
[A,B] = −εA
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(2) Q1 = ∂x Q2 = A Q3 = x∂x + B
[A,B] = −A

L3,5 :

(1) Q1 = Ae−x Q2 = e−ax(ε∂x + B) Q3 = ∂x
[A,B] = −εA

(2) Q1 = e−x(∂x + A) Q2 = Be−ax Q3 = ∂x
[A,B] = εaB

L3,6 : Q1 = A cosx + B sinx Q2 = B cosx − A sinx Q3 = ∂x
[A,B] = 0

L3,7 : Q1 = e−ax(A cosx + B sinx) Q2 = e−ax(B cosx − A sinx)

Q3 = ∂x
[A,B] = 0

L3,8 : Q1 = ∂x Q2 = x∂x + A Q3 = x2∂x + 2Ax + B
[A,B] = B

L3,9 : No representations.

In the above formulaeα is an arbitrary constant,ε = 0, 1, andA, B are r × r constant
matrices.

3. Quasi-exactly solvable matrix models

As a second step of an implementation of the Lie-algebraic approach to constructing matrix
quasi-exactly solvable models we have to pick out from the whole set of realizations of Lie
algebras listed in the previous section those having finite-dimensional invariant subspaces.

Consider first the one-dimensional Lie algebra〈∂x〉. A space with basis vectors
f1(x), . . . ,fn(x) is invariant with respect to the action of the operator∂x if there exist
complex constants3ij such that

dfi (x)

dx
=

n∑
j=1

3ijfj (x)

for all i = 1, . . . , n. Solving this system of ordinary differential equations yields the
following expressions for unknown vector functionsfi :

fi (x) =
r∑

j=1

n∑
k=1

(e3x)ikCkjej

where3 is the constantn × n matrix having the entries3ij ; Ckj are arbitrary complex
constants; the symbol(A)ij stands for the(i, j)th entry of the matrixA ande1, . . . ,er are
constant vectors forming an orthonormal basis of the spaceRr .

It follows from the general theory of matrices that the above formulae can be represented
in the following equivalent form (see, e.g. [21]):

fi (x) =
m∑
j=1

eαj x
n∑
k=1

P [n−m]
ijk (x)ek. (6)

Hereα1, . . . , αm are arbitrary complex numbers with|αi | < |αi+1|, the symbolP [n−m]
ijk (x)

stands for an(n−m)th degree polynomial inx, 16 m 6 n, k = 1, . . . , n.
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As each realization of the low-dimensional Lie algebras obtained in section 2 contains
the operator∂x , their finite-dimensional invariant subspaces are necessarily of the form
(6). In what follows we will obtain a complete description of finite-dimensional invariant
subspaces of the representation spaces of the representations of the two-dimensional Lie
algebraL2,1 given in (4) and (5).

First we turn to the case (4). Let us study the restrictions on the choice of the basis
vector functions (6) imposed by a requirement that the corresponding vector spaceVn is
invariant with respect to the action of the operatorQ2 = Ae−x . By assumption, there exist
complex constantsSij such that the relations

Ae−xfi =
n∑
j=1

Sijfj

hold with i = 1, . . . , n. Hence we get
m∑
j=1

e(αj−1)x
r∑
k=1

P [n−m]
ijk (x)Aek =

m∑
j=1

eαj x
r∑
k=1

P̃ [n−m]
ijk (x)ek

where

P̃ [n−m]
ijk =

n∑
l=1

SilP [n−m]
ljk .

Comparing the coefficients of eαix yield thatαi+1 = αi+1, i = 1, . . . , m−1 and furthermore
r∑
k=1

P [n−m]
i1k (x)Aek = 0 (7)

for all i = 1, . . . , n.
Let us choose the new basis of the spaceRr in such a way that the firsts basis elements

e1, . . . ,es are eigenvectors of the matrixA with zero eigenvalues, namely

Aei = 0 i = 1, . . . , s.

Given this choice of the basis, it follows from (7) thatP [n−m]
i1k (x) = 0, k = s + 1, . . . , r.

Hence, we conclude that the remaining basis vectorses+1, . . . ,er satisfy the relations

Aei =
s∑

j=1

aijej i = s + 1, . . . , r

with some constantaij .
Thus, the most generaln-dimensional vector spaceVn invariant with respect to the Lie

algebra〈∂x, Ae−x〉 is spanned by the vectors

fi (x) = eαx
m∑
j=2

e(j−1)x
r∑
k=1

P [n−m]
ijk (x)ek + eαx

s∑
j=1

P [n−m]
ij (x)ej

whereα is an arbitrary complex constant,P [n−N ]
ijk (x),P [n−N ]

ij (x) are arbitrary(n − N)th-
order polynomials inx, i = 1, . . . , n. And what is more the matrixA is of the following
form:

A =
(

0 Ã

0 0

)
whereÃ is an arbitrary constants × (r − s) matrix.

Now we turn to representation (5). It is necessary to investigate the restrictions on the
choice of the basis vector functions (6) imposed by a requirement that the corresponding
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vector spaceVn is invariant with respect to the action of the operatorQ2 = x∂x + A. By
assumption, there exist complex constantsSij such that the relations(

x
d

dx
+ A

)
fi =

n∑
j=1

Sijfj

hold with i = 1, . . . , n. Inserting expressions (6) into these equations and comparing the
coefficients of eαj xxk we arrive at the conclusion thatα1 = · · · = αm = 0. With this
restriction formulae (6) give the most general finite-dimensional invariant subspace of the
representation space of the Lie algebra〈∂x, x∂x + A〉

fi (x) =
r∑
k=1

P [n−1]
ik (x)ek i = 1, . . . , n.

A detailed investigation of finite-dimensional invariant subspaces admitted by the three-
and four-dimensional Lie algebras is in progress now and will be the topic of our future
publications.

In what follows we will construct examples of quasi-exactly solvable two-component
matrix models based on representations of the Lie algebraL3,8 = sl(2,R). The construction
procedure relies upon the assertion below which is given without proof.

Theorem 1.The representation space of the algebrasl(2,R) having the basis elements

Q1 = ∂x Q2 = x∂x + A Q2 = x2∂x + 2xA+ B (8)

whereA andB are constant 2× 2 matrices satisfying the relation [A,B] = B, contains a
finite-dimensional invariant subspace iff the matricesA,B are of the form

(1) A =
(− n

2 0
0 −m

2

)
B =

(
0 0
0 0

)
(9)

or

(2) A =
(− n

2 0
0 2−n

2

)
B =

(
0 0
−1 0

)
. (10)

Heren andm are arbitrary natural numbers withn > m.

Using the fact that the algebra in question has the Casimir operatorC = B∂x +A−A2

it is not difficult to become convinced of the fact that representations of the form (8), (10)
are the direct sums of two irreducible representations realized on the representation spaces

R1 = 〈e1, xe1, . . . , x
ne1〉 R2 = 〈e2, xe2, . . . , x

me2〉
wheree1 = (1, 0)T, e2 = (0, 1)T.

Representations (8), (10) are also the direct sums of two irreducible representations
realized on the representation spaces

R1 = 〈ne1, . . . , nx
je1+ jxj−1e2, . . . , nx

ne1+ nxn−1e2〉
R2 = 〈e2, xe2, . . . , x

n−2e2〉.
According to the scheme given in the introduction to obtain a quasi-exactly solvable

model we have to compose a linear combination of basis elements of a Lie algebra of
differential operators whose representation space has finite-dimensional invariant subspace
Vn. And what is more, coefficients of this linear combination are constant matrices of the
corresponding dimension whose action leaves the spaceVn invariant.

Consider first the representation (8), (10) withn = m. According to the above its
representation space contains 2(n+1)-dimensional invariant subspaceV2n+2 spanned by the
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vectorse1x
j , e2x

j , j = 0, . . . , n. A direct verification shows thatV2n+2 is invariant with
respect to action of any 2× 2 matrix. Composing a linear combination of (8), (10) under
n = m with coefficients being arbitrary 2× 2 matrices yields the following quasi-exactly
solvable model:

(A1+ A2x + A3x
2)

du(x)

dx
+ (A4− nxA3)u = λu. (11)

HereA1, A2, A3, A4 are arbitrary constant 2× 2 matrices,u(x) is a two-component vector
function.

Providedn = m+1, representation (8), (10) gives rise to a quasi-exactly solvable matrix
model of the form

(A1+ B1x + B2x
2)

du(x)

dx
+ (B3+ B2A)u = λu (12)

whereA1 is an arbitrary 2× 2 matrix andB1, B2, B2 are arbitrary upper triangular 2× 2
matrices.

Finally, if n > m+1, then representation (8), (10) yields a quasi-exactly solvable matrix
model of the form (12), where bothA1 andB1, B2, B3 are arbitrary upper triangular 2× 2
matrices.

A similar analysis shows that representation (8), (10) gives rise to a quasi-exactly
solvable model

(B1+ B2x + B3x
2)

du(x)

dx
+ (B4+ B3(2xA+ B))u = λu (13)

where

Bi =
(
λi bi
0 λi

)
i = 1, . . . ,4

λi, bi being arbitrary complex constants.
Needless to say that any linear matrix model obtained from one of the above quasi-

exactly solvable models by a change of variables is in its turn quasi-exactly solvable. In
other words, equations (11)–(13) are representatives of equivalence classes of quasi-exactly
solvable models. Other representatives are obtained via a transformation of variables

x → x̃ = f (x) u→ F(x)ũ (14)

wheref (x) is a smooth function andF(x) is an arbitrary invertible 2× 2 matrix whose
entries are smooth functions ofx.

In the same way, second-order quasi-exactly solvable matrix models are constructed. In
particular, taking a bilinear combination of operators (8) withA,B being given either by
(9) or (10)

H =
3∑

i,j=1,i6j
αijQiQj +

3∑
i=1

αjQj

whereαij , αi are arbitrary real constants, yields two families of quasi-exactly solvable matrix
models of the form

Hu = λu.
By a suitable transformation (14) the latter can be transformed to become a matrix
Schr̈odinger equation(

− d2

dx̃2
+ V (x̃)

)
ũ = λũ.
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Here V (x̃) is the 2× 2 matrix potential, whose explicit form depends essentially on the
parametersαij , αi and integersn,m. Let us stress that the matter of hermiticity of thus
obtained matrix potential is by no means clear and needs special investigation.

With a particular choice of the matricesA,B

A =
(− n

2 0
0 − n

2

)
B =

(
0 0
0 0

)
the well known nine-parameter family of scalar quasi-exactly solvable Schrödinger equations
is obtained [2–7].

4. Conclusions

This paper is primarily aimed at solving the problem of the classification of quasi-exactly
matrix models by purely algebraic means. As a result, we obtain some classes of systems
of first- and second-order ordinary differential equations such that a problem of finding
their particular solutions reduces to solving thematrix eigenvalue problem. Now to decide
whether a given specific matrix model is solvable within the framework of an approach
expounded above, one has to check whether it is possible to reduce it with the help of
transformation (14) to one of the canonical forms given in section 3. When one deals with
a scalar model this check is done trivially (see [7] for details). However, for the case of
matrix models it involves tedious and cumbersome calculations and is by itself rather a
non-trivial algebraic problem. As an illustration we will adduce an instructive example.
Consider the following two-component matrix model:

Hu ≡ (ibσ1Q1+ iaσ2Q2+ c1σ1+ c2σ2)u = λu (15)

where a, b, c1, c2 are arbitrary real parameters withab 6= 0, andσ1, σ2 are 2× 2 Pauli
matrices, and

Q1 = ∂x Q2 = x∂x +
(

1 0
0 1

)
.

This model is quasi-exactly solvable by construction. Making the change of variables

x = b

a
sinh(ay)

w(x) = (cosh(ay))1/2 exp

{
− i

a
(c1 arctan sinh(ay)+ c2 ln cosh(ay))

}
× exp{−iσ3 arctan sinh(ay)}ψ(y)

we reduce (15) to the Dirac-type equation

iσ1
dψ

dy
+ σ2V (y)ψ(y) = λψ (16)

where

V (y) = a2c2− b2c1 sinh(ay)

ab cosh(ay)

is the well known hyperbolic P̈oschl–Teller potential. This means that the Dirac equation
(16) with the hyperbolic P̈oschl–Teller potential is quasi-exactly solvable.

Thus, applying the obtained results to decide whether a given model is quasi-exactly
solvable requires considerable experience in manipulating matrix exponents. Generically, to
check which equations of the form (16) can be reduced to one of the quasi-exactly solvable
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models constructed at the end of section 3 one has to solve systems of nonlinear algebraic
equations.

A technique used in this paper can be generalized in order to enable one to classify
multidimensional matrix models in the same way as done for a scalar case by González-
Lópezet al [11–13].

The final important remark is that the property of quasi-exact solvability is intimately
connected to the conditional symmetry of a model under study. This fact was first noticed
in [8], where we proved that the quasi-exact solvability of stationary Schrödinger equations
is in one-to-one correspondence with their conditional symmetry. We believe that similar
results can also be obtained for matrix quasi-exactly solvable models.
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